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Long-Range Boundary Effects in Simple Fluids 
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We discuss long-range boundary effects in simple two- or three-dimensional 
fluids. These boundary effects are due to the existence of long-range correlations 
in nonequilibrium fluids and can be computed either by means of kinetic theory 
or phenomenological mode-coupling theories. In particular, we use kinetic 
theory to compute the stress tensor and heat flux vector for a fluid in a 
nonequilibrium steady state in a finite geometry and show that both the effective 
shear viscosity and effective heat conductivity have contributions due to the 
walls of the container that influence the behavior of the system far into the fluid. 
We also show that the mechanocaloric effect is present in the bulk of a 
three-dimensional fluid and that there are normal stresses in a fluid whenever 
the temperature gradient is nonzero. 

KEY WORDS: Kinetic theory; mode coupling theory; long-range correla- 
tions; boundary effects. 

1. INTRODUCTION 

In 1974 Wolynes (~) used nonlinear fluctuating hydrodynamic equations to 
discuss long-range boundary effects in a simple three-dimensional fluid 
subject to a steady shear, i.e., planar Couette flow. He found that due to 
mode-coupling effects the influence of the walls of the system are felt far 
into the bulk of the fluid. In fact, he found that in three dimensions (3d) the 
effects of the walls decay only as the inverse square root of the distance 
from the walls. Further, he showed that the coefficient of this long-range 
effect is very small. 
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In this paper we use the kinetic theory of moderately dense gases to 
discuss similar long-range boundary effects. We will rederive the results of 
Wolynes from this microscopic approach and also extend his work in a 
number of interesting directions. We consider a moderately dense gas in 
either two or three dimensions confined between two parallel plates, of 
infinite extent, located at y = 0 and y = D. In this system we will impose a 
steady shear and temperature gradient by moving one of the plates relative 
to the other and also heating one of the plates relative to the other (cf. Fig. 
1). For this system we will compute both the stress tensor and heat flux in d 
dimensions and show that the effective shear viscosity and heat conductiv- 
ity have contributions due to the walls which extend far into the bulk of the 
fluid. The transport coefficients then can be expressed as the sum of two 
terms, a bulk contribution, 7/and X, and a contribution due to the walls, ~w 
and X w. In three dimensions the contributions ,/,~ and X~ decay as the 
inverse square root of the distance from the walls. In two dimensions ~,~ 
and X~ grow logarithmically as one moves into the bulk of the fluid, so that 
for sufficiently large distances these logarithmic terms begin to dominate 
what are usually called the bulk values of the transport coefficients. For 
these distances our calculations are no longer valid and must be extended. 
In this paper we will also show that in three dimensions a mechanocaloric 
effect (2) exists far into the fluid. That  is, a heat flow exists even in the 
absence of a temperature gradient when there is a velocity gradient in the 
fluid. Such an effect is known to occur in kinetic boundary layers, (2) but we 
believe that this is the first time that the mechanocaloric effect has been 
shown to exist deep into the bulk of a fluid. Further, we will show that even 

u=O 
7% 

u=DX s 

T= To[ I +DX T ] 

y =0 y=D 

Fig. 1. Parallel plate geometry with a velocity, u, and temperature, T, gradient. A typical ring 
collision event between particles 1 and 2 is also illustrated. 
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when the velocity gradients are zero there can be normal stresses in a fluid 
due to a temperature gradient. 

The long-range boundary effects discussed above are due to the fact 
that the nonequilibrium pair correlation function is of long range. O'4) These 
long-range correlations are caused by mode-coupling contributions and 
have been discussed elsewhere (3-5'7~ in several different contexts. Here we 
discuss these long-range correlations in fluids of finite extent. 

It should be remarked that although we will present our calculations 
for a moderately dense gas, all of our final results will be quoted for general 
fluid densities since we have also derived them using a hydrodynamic 
mode-coupling theory. (6) For liquid densities we shall find that the effects 
we calculate are not small for two-dimensional fluids and that they may be 
of relevance in experiments. 

The plan of this paper is as follows. In Section 2 we give the kinetic 
equations needed to describe a moderately dense gas in a nonequilibrium 
steady state in the presence of walls. In Section 3 we formally define the 
macroscopic functions of interest in terms of the single-particle distribution 
function, f l ,  and in terms of the nonequilibrium pair correlation function, 
G 2. In Section 4 we discuss the equilibrium hydrodynamic modes of the 
linearized inhomogenous Boltzmann operator for finite geometries. These 
modes are needed to evaluate G2 and calculate the long-range boundary 
effects. In Section 5 the boundary effects are calculated using the results of 
Section 4. The main results of this paper can be found in this section. In 
Section 6 we discuss the effects of the long-range boundary effects on the 
hydrodynamic state of the fluid. Finally, in Section 7 we make some 
concluding remarks and discuss the relation between the mode-coupling 
effects calculated here and those previously calculated. In this section we 
also comment on the experimental relevance of our results. 

2. THE KINETIC EQUATIONS 

In this section we present 
describe a moderately dense gas 
presence of walls. 

the basic kinetic equations needed to 
in a nonequilibrium steady state in the 

We begin by considering a classical system of N identical particles 
each of mass m contained in a two- or three-dimensional volume ~2. We 
first define the microscopic one- and two-particle densities 

N 

f (1)  = ~ 6(1 - x~) (2.1a) 
i = 1  

N 

f(12) = Z 6(1 - x,)6(2 - xj) (2.1b) 
i~j 
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In Eq. (2.1) 1 ~ (RI,V1) is a particular point in/~ space, x i = (ri,vi) is the 
phase of particle i, and the sum is over the number of particles N, in a 
volume a. 

In the course of our calculations, we will consider fluids that are of 
finite extent in only one of the spatial directions (cf. Fig. 1). For this case 
the limit N,  f~-~ ~ ,  N/~2  = n is to be used. All the physical quantities of 
interest can be related to the one- and two-particle distribution functions 
defined by 

fl(1) = ~ 3(1 - X i 
i =  1 - s s  

f2(12) = 2 8(1 - x~)8(2 - xj) 
i ~ j  ss 

(2.2) 

where ( )s~ denotes a steady state ensemble average. Of particular interest 
is the pair correlation function defined by 

G2(12 ) --= f2(12) - f l(1)fl(2) (2.3) 

On the basis of the methods developed by Ernst and Dorfman, (7) 
Krommes and Oberman, (s) Ernst et al., (5) Ernst and Cohen, (9~ and Doff- 
mand and van Beijeren (l~ kinetic equations for f l ( l )  and G2(12 ) of a 
moderately dense gas in a nonequilibrium steady state in the presence of 
walls can be derived without difficulty. (11} The one-particle distribution 
function satisfies the equation 

�9 0 1 =fd2 (12) G2(12)] + Tw(1)f,(1 ) (2.4a) Vl ~ f ' (  ) [f,(1)/1(2) + 

For a moderately dense gas, G2(12 ) satisfies the equation 

[ Ess(1 ) + Esd2)]G2(12 ) = T( la ) f f f l ) f1 (2  ) (2.4b) 

In Eq. (2.4b)/~ss(1) is a linear kinetic operator defined by 

�9 0 fd3  iP(13)(1 + P13)f t (3) -  Tw(1 ) (2.5a) L s s ( 1  ) = V 1 01~l 

with 7~(13) the point binary collision operator: (7) 

7~(13) = 8(R, - R3)To(13 ) 
,"2rr r a  

= ~(R 1 - R3)30 dr d b b [ V  1 - V3[(b o - -  l) (2.5b) 

where (b, e) are, respectively, the impact parameter and azimuthal angle of 
the binary collision between two particles with velocities V l, ,V 3, a is the 
range of the interparticle forces, and b o is an operator that replaces the 
velocities V 1 and V 3 by the velocities of restituting collisions, Vtl and V;. 
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Further, P13 in Eq. (2.5a) is a permutation operator that permutes the 
indices 1 and 3. TwO ) in Eqs. (2.4a) and (2.5a) is a wall-particle collision 
operator that takes into account the change in the distribution functions 
due to collisions of the particles with the walls. Under quite general 
conditions it has been shown (I~ that when TwO ) acts on a function h(1) 
the result is given by 

Tw(1)h(1) = f d w 3 ( R , -  Rw) 

x { O ( V  �9 fi)fdV] 0(- V '  1 �9 f i ) l V  1 �9 f i I K ( V  l , V ] ) h  ( l~  1 , Vii)  

- 0 ( - V ,  - ~) lV,  �9 ~ lh (1 )  } (2.5c)  

where R w denotes the position of a point on the walls, f dw indicates an 
integral over the wall surfaces, O(x) = l for x > 0 and is zero otherwise, fi is 
a unit vector normal to the wall pointing into the fluid, and K(V 1 , V]) is a 
scattering kernel which specifies the interaction mechanism between the 
walls and the gas particles. Explicit examples of K(V1,V]) will be given 
further on. 

The structure of the kinetic equations given by Eqs. (2.4) and (2.5) is 
relatively easy to understand. We have used the BBGKY hierarchy equa- 
tions for the distribution functions in the presence of walls and neglected 
the three-particle correlation function. 3 In doing this we have obtained not 
only the Boltzmann equation, obtained by neglecting G2(12 ) in Eq. (2.4a), 
but corrections to it also. Although the corrections that arise from the 
G2(12 ) in Eq. (2.4a) are of higher order in the density, they are important 
since they lead to the long-range boundary effects discussed in Section 1. 
The dynamical events that are taken into account by the approximation 
given by Eq. (2.4b) for G2(12 ) are the so-called ring collision events. (12) An 
example of a ring collision is given in Fig. 1 where two particles, say 1 and 
2, collide and then undergo a number of other collisions with other 
particles, or the walls, before colliding again. 

3. FORMAL SOLUTIONS TO THE KINETIC EQUATIONS 

In this section we construct formal solutions to our kinetic equations to 
first order in the macroscopic gradients and relate the stress tensor and heat 
flux to simple velocity moments of the one-particle distribution function. In 
the following two sections of this paper we will explicitly evaluate these 
formal expressions. 

3 We have also neglected a class of dynamical events known as the repeated ring events. As 
discussed elsewhere (7,12) this is consistent to the order of density considered here. 
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It should be remarked that although many of the formal manipulations 
used here are valid for fluids close to local equilibrium, our eventual 
calculation of the long-range boundary effects will be restricted to fluids 
close to thermal equilibrium (see Section 7(2) for a discussion). That is, our 
explicit results will be valid only to first order in the deviations from total 
equilibrium. 

To solve Eqs. (2.4) we shall use a generalized Chapman-Enskog 
solution method. Since f1(1 ) and G2(12 ) vanish outside the fluid volume, we 
write (10) 

fl(1) = W(R1)j~(1 ) O.la) 
G2(12)  = W ( R 1 )  W ( R 2 )  6 2 ( 1 2 )  

Here W(Rl) is a characteristic function that vanishes when R 1 is outside the 
fluid volume fa: 

W ( R l ) =  1 if R IEf~  
= 0 ( 3 . l b )  

Inserting the Eqs. (3. l a) into Eq. (2.4a) and assuming that j~(1) and 62(12 ) 
are continuous at the walls we obtain a single equation which contains 
terms that are continuous at the walls and those that are not. It then 
follows that the continuous and discontinuous terms must vanish sepa- 
rately. Physically this is equivalent to requiring that there be no sources or 
sinks of particles at the walls. (10) The resulting two equations are 

. a = j~d2 ^ - - 62(12) ] Vl ~ f ( 1 )  _ T(12)[ f~(1)fl(2 ) + (3.2a) 

and 

rw(1)0((1) 

-fdwO(V, a ) ~ ( R  l - -  Rw) 

, , .  . , V1) f l (R1  , V'I) IVI l ] l J q ( l )  } X {;dV~lO(-'V1 l l ) lV 1 ll]K('$'rl ' ~ - " 

= 0 (3.2b) 

The Eq. (3.2b) can be used to determine boundary conditions on fl(1). (1~ 
A similar procedure with Eqs. (2.4b) and (3.1 a) yields 

[ Lss(1) + Lss(2) 162(12) = 7~(12)f'](1)/'~(2) 

and 

Tw(1)G2(12 ) = 0 = Tw(2)G2(12 ) 

In Eq. (3.3a) Ls~(1 ) is given by 

Lss(1 ) = v  1. OR 1 - - -  fd3  : 03)(1 + e,3)fl(3) 

(3.3a) 

(3.3b) 

(3.3c) 
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We are interested in the behavior of the functions j~(1) and G2(12) for 
systems where there are small gradients in the local variables--the number 
density n, the temperature T = (kefl) - 1, where k e is Boltzmann's constant, 
and local velocity u. The lowest-order approximation for J~(1) is the local 
Maxwellian: 

[ [ fl(Rl)m ]d/2 , fi(R,)m IV 1 _u(R1)]2 ] ) 
fl(1) = n(R1) 2rr ] exp{ 2 (3.4) 

while G2(12) vanishes to lowest order in the gradient. The vanishing of 
G(12) to lowest order follows since ~(12)f~(1)f~(2) = 0 [of. Eq. (3.3a)].4~ 

Using that we are interested in f1(1 ) for small gradients and that G2(12 ) 
in Eq. (3.2a) leads to terms that are one higher order in the density than the 
Boltzmann equation contribution, we write )~(1) as 

j~(1) = fl(1) + fv(~)(1) + 6fv,(l ) + . - .  (3.5) 

Here fv(B)(1) is the first gradient correction to ft(1) that follows from the 

Boltzmann equation, obtained by neglecting G2(12) in Eq. (3.2a), and 
6fv,(1 ) is the first gradient correction to .~(1) from G2(12). Using the 
Chapman-Enskog solution method and Eqs. (3.2a), (3.4), and (3.5) we 
obtain (1o) 

and 

f (9(1  ) - 1 [ A,(1) f~(1)flm C~CI~ 

1 [ fl mC2 
+ A - - ~  fl(1) 2 

d 3Rl~ 

3 log T d +  2 C1 ~ (3.6a) 
2 3R1~ 

= - f d 2  T(12)G2(12 ) (3.6b) 

In the Eq. (3.6a), Ct(Rl) = V 1 - u(R 0 and At(1 ) is a local linear collision 
operator defined by 

A,(1) = f d 3  T(13)(1 + e~,)f,(3) (3.6c) 

The dissipative contributions to the stress tensor, P, and heat flux, Q, 
are given in terms of)~(1) by (l~ 

p~p(Bi)= m)CdVl(Cl,~C, ~ 8'~C21 
d 

P(ff)(Rl) + 6P~B(R1) 

+ 

(3.7a) 

4 The use of point 7~(12) operators is consistent to the orders of density considered hereJ 5) 
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and 

rnC? d + 2 )[ f~(~)(1) + 8fv,(l) l Q~(R1) = f dVl C~,~ 2 2,8 

----- Q~e)(RI) + 8Q~(R1) (3.7b) 

The Boltzmann contributions to the stress tensor and heat flux can be 
written as (~0) 

0u~ (3.8a) P~(~)(R,) = -~/e[ T(R1)]zX~,,. 3R,. 

and 

0T (3.8b) Q~(S)(R 0 = -XB I T(R1)] 0Rj~ 

where A~,v~ _= [6~v8~, + 6~5/~v - (2/d)8~BSv~] and ~B,)t8 are the low den- 
sity, Boltzmann, value of the shear viscosity and heat conductivity (1~ and 
the summation convention has been used in Eq. (3.8). 

Using Eqs. (3.6b) and (3.7) the contributions from G2(12 ) to P~ and 
Q~ are 

(ClaCIB 'aft C? ) 1 ~(12)~2(12 ) (3.9a) -m dV,j ( d 6P,~r (RI)= 

and 

(mC( d +  2 ) A@(1) 7~(12)G2(12) (3.9b) 8Q'~(R')=-SdVlfd2C'~ 2 2 B 

From the Eqs. (3.3a), (3.4), (3.5), and (3.6a) and the fact that we are 
interested in 8P~r and 6Q~ to first order in the deviations from total 
equilibrium and in G~(12) it follows that a consistent G2(12) is given by 

G2(12 ) = [Leq(1 ) + Leq(2)]-lT(12)(1 + Pl2)feq(2) 

;,< A~q(1) feq(1)Bm V~,~V~ d ~R,p 

1 t~mV~ d + 2  V,,~ (3.10a) 
+ A~q(1) f~q(1) 2 2 3R1~ 

where we have consistently replaced C1~ by Via and j}(1) by the total 
equilibrium Maxwellian, 

exp - (3.10b) 
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In Eq. (3.10a), Leq(1 ) is the inhomogenous Boltzmann operator, 

Aeq(l ) (3.10c) Leq(1 ) = V 1 �9 OR l 

with Aeq(1 ) the linearized Boltzmann operator given by 

Aeq(i  ) = fd3 T(13)(1 + Pl3)feq(3) (3.10d) 

Further, in Eqs. (3.9) we should consistently replace C1~ by VI~ and At(1 ) 
by Aeq (1). 

It should be remarked that the only position dependence in the 
transport coefficients in Eqs. (3.8) is through the temperature field and that 
this position dependence can be neglected to first order in the deviations 
from total equilibrium. In Section 5 we shall show that ,3P~B and 6Q~ have 
an additional, explicit, position dependence due to the presence of the walls 
of the system. 

4. HYDRODYNAMIC MODES OF THE INHOMOGENOUS 
BOLTZMANN OPERATOR 

4.1. Formulation of the Problem 

In order to explicitly evaluate Eq. (3.10a), supplemented by the bound- 
ary conditions given by Eq. (3.3b), we need to solve the eigenvalue 
problem, 

[Leq(l ) - Tw(1)] feq(1)O/ = r ) (4.1a) 

Here | is the right eigenfunction, there is a left or adjoint eigenvalue 
problem also, ~oj is the eigenvalue, j is a general eigenfunction index that 
can represent both discrete and continuous indices, and the factorfeq(1 ) has 
been inserted for convenience. By explicitly using the wall operator, Tw(1 ), 
in Eq. (4.1) the boundary conditions given by Eq. (3.3b) will be automati- 
cally satisfied if we write 

Oil(l) = W(RI)O~(1 ) (4.1b) 
and require ~f(1) to be continuous at the walls. Before defining the adjoint 
or left eigenvalue problem, we discuss how to calculate | and oJj. 

J 

Physically it is reasonable to assume that the long-range boundary 
effects in G2(12) are due to the long wavelength or hydrodynamic modes of 
Eq. (4.1a). These hydrodynamic modes are characterized by the fact that 
for long wavelengths their eigenvalues vanish. In the course of our calcula- 
tions we show that the vanishing of these hydrodynamic eigenvalues is the 
mechanism responsible for the long-range boundary effects. From this it 
follows that the nonhydrodynamic modes can be neglected here. 
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Recently Kirkpatrick and Cohen (4) showed how to calculate the hy- 
drodynamic modes of Eqs. (4.1), and here we will only state their main 
results. The eigenfunction ~)~(1) can be written 

n 3 (~(1)  = ~ ( R 1 ) +  flmV,~fij~(R,) + -~ ( - -~  V 2 -  ~ ) ~ . ( R , )  + o ( l / L )  

(4.2) 

of the form e-'~/{t;j,/3j,, Tj}. These are 

- ,ojoARO = ~ Ps ~(R') 

- oojpj~(R 0 = - _ _  

d - ~j ~ ,,k~ ~ ( R , )  = 

ORla (F/KBTj '(R') -[,- ----~ pj(Ri) ) 

0 2 ,, 
+ v 8 ORleORlr A~e,r~&"(R1) 

,, 0 2 ,, kBT 0 Pjv(Rl ) + XB Tj(R,) 
rn ~Rlv ~RI~ORI~ 

where ve -- ~8/rnn is the kinematic viscosity. 
The hydrodynamic equations given by Eqs. (4.3c) must be supple- 

mented by boundary conditions that can be explicitly determined by 
specifying the scattering kernel K(VI, V' 0 in Eq. (2.5c). (4) In this paper we 
consider only two possible forms of K(Vl,V])(l~ (i) specular reflection 
model where the gas particles are elastically reflected by the walls so that 

K(V 1 ,V'l) = 6(V i - V 1 + 2fi(fi. Vl) ) (4.4a) 

(ii) Diffusive reflection model where the particles are absorbed by the walls 
and then reemitted with a velocity determined by a Maxwell distribution 
with a temperature T w = (kBfl,~) 1 of the wall, 

K ( V ,  ,V~) = 

fil(2~rmflw),/2[ ~ mfl w ~a/2 ( IVi. ) exp l -  m 
I v ,  - , ( R w ) ]  2 

2/~ T~ (4.4b) 

where u(Rw) is the velocity of the wall. The boundary conditions that follow 
from these scattering kernels for the specular reflection model for the 

(4.3a) 

(4.3b) 

(4.3c) 

where l is the mean free path of the particles in the gas and L is the 
characteristic distance over which Oil(l) varies. This implies that Eq. (4.2) 
is a valid representation of 6)~ as long as 1/L << 1. The position dependent 
expansion parameters, t3j(R1), /~,(R1) and Tj(RI), in Eq. (4.2) satisfy the 
linearized hydrodynamic equations for the set of time-dependent variables 
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with R~ 
obtains 

geometry given in Fig. (1) are 
A 

es~(& ) = 0  
A 

0r; (R~) ", ='< 
0y 1 = 0 (4.5a) 

O/~Z0yl (R[) I~I=R~ = 0 = ~ 0]~X (R|) RI=Rw 

= (xl,0,Zl) and (xl,D, zl). For the diffusive reflection model one 

h~(uw) = 0 
(4.5b) 

~ ( R w ) = 0  

Similarly, the left eigenvalue problem can be defined and reexpressed 
in terms of the solution to hydrodynamic eigenvalue problem. Kirkpatrick 
and Cohen (l~ show that the left eigenfunction, @L(1), can be written 

m (R,) + BV,~g: (&)  + ~ ~ (R,) V~ - + O ( U L )  

(4.6) 

The expansion coefficients, ~3j +,/~.+ and ~+ satisfy the Eqs. (4.3) and (4.5) 
except that O/0R 1 should be replaced by - 0 / 0 R  I. Further, the hydrody- 
namic modes satisfy the completeness and orthogonality conditions: 

1 = ~, I~ff(1))eq((~jL(1)[ (4.7a) 
J 

(6)~(l)]OJ~(1))eq~dRl f dV~6)~(1)~)~(1)~eq(1) = 6ix (4.7b) 

where ~eq(1) = feq(1)/n and fa dR1 indicates an integral over the volume of 
the fluid. 

For infinite space the hydrodynamic modes that can be derived from 
Eqs. (4.1a), (4.2), (4.3), and (4.6) are well known. (12) There are (d + 2) of 
these modes: a heat mode (H),  two sound modes (o- -  + 1), and ( d -  1) 
viscous or shear modes (vs). Here we compute these modes for a fluid of 
finite extent. 

4.2. The Hydrodynamic Modes for Slip Boundary Conditions 

Although the diffusive or stick boundary conditions given by Eq. 
(4.5b) are the most realistic boundary conditions to use to solve the right 
and left eigenvalue problems, the slip boundary conditions given by Eq. 
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(4.5a) will be used in this paper. Elsewhere (10 it is shown that the 
long-range boundary  effects computed  here are insensitive to whether stick 
or slip boundary  conditions are used in solving Eqs. (4.1). In  three dimen- 
sions this follows because the long-range boundary  effects are due to the 
sound modes and, outside a thin hydrodynamic  viscous and thermal 
bounda ry  layer ~d ,  =-- (vL/c) l/2, d r =- (DTL/C)I/2~IO-4-10 -5 cm, 5 the 
sound modes for slip and stick boundary  conditions are identical. ~6'~'~3) 
Since we are interested in distances much greater than d,,d r it is not  
surprising that the slip and stick boundary  conditions give the same results 
for the long-range boundary  effects. In  two dimensions similar arguments  
lead to the same conclusions. 

In  d dimensions there are (d + 2) hydrodynamic  modes and for slip 
boundary  conditions they can be easily constructed. There are d -  1 
normalized viscous modes given by 

Of,(k, 1) 

= [| 1)]* 

= (2Tr)(l_S)/2 2tim exp(ikli.R,,,) 

• {i~g,ysinkyy,- ~y~, �9 V~cosk~yl} + O(kl) (4.8a) 

and 

~R(k, 1) = [(~2(k, 1)]* 

=(2~r)O-a)/2( 2f l :  ) '/2 . 7 exp[ik,, R, IY 
A 

x (k,, x V,)cosk, y,  + o ( k l )  

with eigenvalues 

(4.8b) 

~0 .... = pB(k~ + k~)~-vBk  2 (4.8c) 

In  Eqs. (4.8) for d = 3 (d = 2), k = (kx,ky,kz) (k = kx,ky), kl~ = (kx,kz) 
number,  (kll = kxR), Rl, ' = (xl,z 0 (Rll I = xr 1~ = k /k ,  k~ and kz (kx) are 

5 From Eqs. (4.9) we see that the length scale L~l/k  where k is the wave number of the 
hydrodynamic modes. Further, from the Eq. (5.5) we see that the important k values in 

c ~ y  �9 , , . cmX/sec determining the long range boundary effects is k~ c/P s Using that v D r F,~ 1 
for air at S.P.T. and V~rs--lO -2 cm2/sec and Dr~10 -3 cm2/sec for water at 20~ we 
find d~, dT~10-4-10 -5 cm. 
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continuous wave numbers - m < k x, k~ (kx) < oo, and ky is a discrete wave 
ky = mr /D (n = 0, 1,2 . . . .  ). There are two sound modes given by (o = + 
1): 

~)~(k, 1) = [ O~(k, 1) ]* 

= (2~r)O-dV2[ dD(d + 2) ],/2 

• V21 + kH.Vl f l f imccoskj1  + ky V,y~rfimcisinkyy 1 

+ O(kl )  (4.9a) 

with eigenvalues given by 

where 

~% = iock + ff-~ k 2 (4.9b) 

2 ( d -  1)v~ 
F,~ - a + (y - 1)DTe (4.9c) 

In Eq. (4.9c) DTB = ~ k B / O @  , P = mn, and ~, = Ce/C v is the ratio of specific 
heats. Finally, there is a heat mode (H)  given by 

(~ (k ,  1) = [| 1)]* 

4 )'/2 
D(d + 2) exp[ ikll �9 R,,,] 

• ( - ~  Vl2 d + 2 )  c ~  (4.10a) 

with an eigenvalue 

a~ H = DTB k2 (4. lOb) 

Further, an approximate completeness relation exist for these modes given 
by [cf. Eq. (4.7a)] 

t 
1 ~'~ ~ ~,,' fdklll@~(k, 1))eq(O~(k, 1)( 

j =  v,H,o ky = n~'/D 

and these modes satisfy the orthogonality condition 

(Oil(k, 1)I Off(k', 1) ) eq=  *j/(~k,,,k~(~(k[I -- kll ) 

(4.1 la) 

(4. l lb) 

In the Eq. (4.11a) the primes on the k~ sum and kll integral denote an 
ultraviolet cutoff, ko, on the order of l -  which is present due to the fact 
that we have used a hydrodynamic approximation in calculating the O~ 'L. 

In the next section Eqs. (4.8), (4.9), (4.10), and (4.11) will be used to 
evaluate 6P~l ~ and 6Q,~ given by Eqs. (3.4) and (3.10). 
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5.  E V A L U A T I O N  O F  8P~f A N D  8Q~ 
To evaluate 8P~f and 8Qa given by Eq. (3.9) the pair correlation 

function G2(12 ) given by Eq. (3.10) is needed. Using Eq. (4.11a) in Eq. 
(3.10) yields G2(12 ). From this result and Eq. (3.9a), retaining terms to first 
order in the deviations from equilibrium only, we obtain 

8P:/3(yl) = - m  ~2 dkll dkTi dV 1 d2 Vk, Vlf 
j , l=~' ,N,o d 

1 7~(12)l16~(k, 1)6f(k',Z))~q 1 • + 

• (O~(k, 1)O~(k', 2)117~(12)(1 + Pl2)feq(2) ~ feq(l) 

x BmV~x V~yX" + 2 2 

In giving Eq. (5.1) we have used (cf. Fig. 1) u = Ux(yl)~, T = T(y 0 and 
denoted Oux/~y I by X" and 0 log T//~yl by X r. From identities like, (7) 

f dV, f dVzOf(k, 1)0~(k',2)7~(12)(1 + P12)feq(2)h(]) 

= - 8(R, - R2)n(Of(k, 1)O~(k', 1) I Aoq(1)h(1)yeq 
+ o (kt, k ' t )  (5.2a) 

where h(1) is an arbitrary function and 

-~ f dV 1 g(1)h(1)eOeq( V~) (5.2b) ( g ( l )  I h(1)}eq 

we can write the Eq. (5.1) as 

_ m E E dkll dkll 8P~n(y~) = 2 j,l=~,u,o~,~5 ,. 

X V l a g l f l  - ,.,aft---- d -  1)Of(k', 1) [wj(k) + Wl(k')]-1 
eq 

x f dR, (Of(k, 1)Of(k', 1) I 

x BmV~xV~yXS + 2 2 eq 

(5.3) 

It should be remarked that the corrections to Eq. (5.2a) of O(kl, k'l) can be 
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neglected when computing the long-range boundary effects since they can 
be shown to lead to terms that decay faster than those retained as one 
moves away from the walls. 

A similar expression for 6Q~(yl) follows in an identical manner and it 
can be obtained from Eq. (5.3) by replacing rn(Vl~ Vlp - 6~BV~/d) in Eq. 
(5.3) by 

( mV~ d + 2 )  
Vie 2 2 3 

To proceed further we explicitly use that we are interested in boundary 
effects that exist far into the bulk of the fluid. That is, we fix the parallel 
plate a ty  = 0 in Fig. 1, let the separation, D, between the two plates tend to 
infinity, and examine the behavior of 6P~(y~) and 6Q~(y 0 for large yr. 
With these approximations we can use the replacement 

2 2 o~ --  X --~ - ( dky (5.4) 
D k y  ~ao 

and evaluate Eq. (5.3) with the aid of Eqs. (4.8), (4.9), (4.10), and (5.4). 
For three-dimensional fluids the crucial point in the evaluation of Eq. 

(5.3) for 8P,~/3(yl), and the corresponding expression for ~Q~(y~), when 
compared with the similar calculation in infinite space, (12) is that due to the 
presence of the wall at y = 0 the wave numbers k and k' in Eq. (5.3) no 
longer satisfy the spatial homogeneity condition k ' =  - k .  That is, due to 
the wall at y = 0  one has instead kll =-kFi  and @ = - k y +  O(1/y). 
Because of this feature the evaluation of the (o, - a) sound-mode contribu- 
tion in Eq. (5.3) will involve a wave number integral of the form 

fo 'dk k d -  i 1 
i o c ( k  - k ' )  + r , k  2 + r , k ( k  - k ' )  

_~ foo'dk k a-1 1 Fs k2 + ioc/y 

--- O(1) + O(1/y  1/2) + ' ' '  in 3d 

O(log y) in 2d (5.5) 

This incomplete cancellation of the propagating parts of the sound modes 
in the mode-coupling integrals in the Eq. (5.3) leads to the long-range 
boundary effects discussed in the introduction. Using similar ideas it 
follows that for three dimensions the remaining hydrodynamic mode com- 
binations lead to less dominant long-range boundary effects. 

In two-dimensional fluids the long-range boundary effects arise from 
contributions in Eq. (5.3) whose sums of eigenvalues [r + ~ot(k')] is of 
O(k 2) if k ' =  - k .  That is, for the combinations ( a , - a ) ,  (~,u), (t,,Dr), 



218 Nieuwoudt, Kirkpatrick, and Dorfman 

(DT, V) and (DT, DT). To see this one can use integral estimates in two 
dimensions like Eq. (5.5) for k~ = -k'~, ky + k~O(1/y) .  

The explicit evaluation of Eq. (5.3) for 8P,~(yl) and the corresponding 
expression for 6Q~(yl) is straightforward. For three-dimensional fluids we 
obtain 

8Ply(y,) = 8Pxy(Y,) - 8Pxy(y , --> ~ ) 
X~kBT( c ~'/z ( l o g ) , , )  

- ~ + 0 - -  (5.6a) 
77w ~, I '~'y I ) Yl 

and 

and 

and 

8CAy~ ) - 8P~(y,)= 8ey~(y,) - 8P~(y,) 

TkBT( c3 )'/2 ~ ) 
= x r y-- + o (5.6b) 

X~kBT ( c 3 )z/2+ o( l~ ) 
3Q~(Yl)- 45v F~ry-----~ y----~ 

(5.6c) 

x% c ( 3 / 'J2 o(l~ ] _ c- + (5.68) 
14~r F~ry~ ] \ Yl } 

with all other 8P,B and 8Q~ equal to zero. In giving these results we have 
subtracted the bulk contributions which are finite as y~ -+ ~ .  These contri- 
butions yield finite renormalizations to the transport coefficients in Eq. 
(3.8).(~2) Further, we have given only the differences in the normal stresses 
since they are the quantities of physical interest. 

In the two-dimensional case we obtain 

kBT (1 + ~ )X'log(yl/l) + O(y~ ( 5 . 7 a )  
~Cy(y~) = -  32---g 7 

8Qy(Yl) = 8~ (v + Dr) + -~ Xrl~ + O(Y~ (5.7b) 

with all other 8P,~ and 8Q,~ equal to zero to O(log Y0. 
In Eqs. (5.6) and (5.7), c = [(Op/~p)s] ~/2 is the speed of the sound 

withp the pressure and s the entropy density, F s = [2(d - 1)/d]u + f / p  + 
( 7 -  1)DT is the sound damping constant with v = 7 /0  the kinematic 
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viscosity, ~ the shear viscosity ~" the bulk viscosity, y = Ce/C~ the ratio of 
specific heats, and D r = )t/oCp is the thermal diffusivity with ?t the heat 
conductivity. As mentioned in Section l, we have written Eqs. (5.6) and 
(5.7) in a form valid for all densities, as obtained from a hydrodynamic 
mode-coupling theory rather than the kinetic theory presented here. The 
kinetic theory result is obtained if the low-density limits of Eqs. (5.6) and 
(5.7) are taken, i.e., c 2 is replaced by (d + 2)/dflm, F s by F,B, v by v B, and 
Cp by (d + 2)ks /2m.  In the next section of this paper we discuss the effects 
of the explicit position, Yl, dependences in Eqs. (5.6) and (5.7) on the 
hydrodynamic fields in the fluid. 

. THE MODIFICATION OF THE HYDRODYNAMIC FIELDS 
DUE TO THE WALLS 

In the linear approximation of the hydrodynamic equations that follow 
from Eqs. (2.4a), (3.8), and (3.9) are 

0.~(R) 
0R, - 0 (6.1a) 

o ~ .~(R) + ; (R)  + ~78Poe(R)  = o (6.1b) 
qe 0 R B 0 R~ 

32 T(R) + 0 
--)~B OR, OR, ~ 8Q~(R) = 0 (6.1c) 

where p is the pressure (=  nk B T for a dilute gas). The structure of these 
equations is that of linearized Navier-Stokes equations in a steady state 
appended by terms involving the long-range boundary effects, 6P, B and 
6Q~, computed in Section 5. If we neglect the terms 8P~ and 6Q~ in Eqs. 
(6.1), i.e., neglect the long-range boundary effects, and use the boundary 
conditions (cf. Fig. 1) 6 

u(R~, o) = o 
(6.1d) 

r(Rtt ,0) = r0 

then to linear order we obtain 

uB(y) = yXS.~ 

rB(y ) = To[1 + yX T] (6.2) 

,~(y) = .o(1 - y x  T) 

6 Since we have already taken the limit D~  oo only the boundary conditions at y = 0 are 
given. 
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In Eqs. (6.2) the subscript B denotes the hydrodynamic fields that follow 
from the Boltzmann equation. 

Owing to the contributions 8P~ and 8Q~ in Eqs. (6.1) there are 
additional, explicit, y dependences in the hydrodynamic equations which 
when taken into account modify the form of the hydrodynamic fields. 
Since we are treating 8P~r and 8Q~ as small quantities we can solve Eqs. 
(6.1) iteratively by using Eqs. (6.2) as our zeroth-order solutions. Writing 

~(y) = ~(y) + 8~(y) + . . .  

T(y)  = T B(y) + ST(y) + . . .  (6.3) 

n ( y )  = n s ( y )  + 8 n ( y )  + . . .  

and using Eqs. (5.6), (5.7), (6.1), (6.2), and (6.3) we can solve for 8u, ST, 
and 8n. 

For general densities in three dimensions we obtain 

u ( y ) = y X  s 1 + ~  ~ ~ (6.4a) 

T(y) = T o 1 + yX  T 1 + ~ r~ y ) jj o ( y -  (6.4b) 

n ( y ) = n  o 1 - a T T y X  r l + f f - ~  ~ + O ( y  -'/2) (6.4c) 

In two dimensions the results are 

I u(Y) = yXS 1 3 2 ~  ; 

ks Tce + log(y / l  (6.5b) T ( y ) = T  o l + y X  r 1 -8 - -  ~ ( u + D r )  

k s Tcp + log(y / l )  (6.5c) 
, , ( y )  = no 1 - a ~ r y X  T 1 - -gg2 (~ + D T )  

In Eqs. (6.4) and (6.5) a T = - - ( ~ p / O  r)p/o is the thermal expansion coeffi- 
cient, Further, l,.~ko I in Eqs. (6.5) is on the order of the mean free path for 
gas densities and on the order of a molecular diameter for liquid densities. 
For moderately dense gases the long range boundary corrections in Eqs. 
(6.4) [Eqs. (6.5)] are of O[(na3)2(O/y)l/2 ] (O(na2)) for three (two) dimen- 
sional systems. 

In two dimensions Eqs. (6.5) imply that for large enough y the 
perturbed hydrodynamic fields are larger than the unperturbed fields so 
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that the iterative solution procedure used above is no longer valid. The 
restrictions that this imposes on the theory are discussed in the following 
section. 

7. DISCUSSION 

Here we discuss in more detail some of the results obtained in this 
paper. 

(1) We have used the kinetic theory for a moderately dense gas to 
compute long-range boundary effects in simple two- and three-dimensional 
fluids. Physically these long-range boundary effects arise because in non- 
equilibrium in the pair correlation function G2(12) is of long range due to 
mode-coupling effects. (3'4) 

In three dimensions it is the contribution from two parallel propagat- 
ing sound modes to G2(12 ) that leads to the dominant long-range boundary 
effect. This follows since sound modes propagate and thus the influence of 
the walls on the behavior of the bulk of the fluid is most effectively 
mediated by sound waves. 

(2) One of the central approximations in this work is the restriction 
of our calculations to the case where there are only small deviations of the 
system from a total equilibrium state. That is, we have considered velocity 
gradients X s, temperature gradients X r, and distances from the wall, y, 
such that X~v << c, and X~v << T, where c is the velocity of sound and T is 
the equilibrium temperature. This restriction was introduced in Section 3, 
so that we could use the hydrodynamic modes of the Boltzmann collision 
operator, linearized about total equilibrium, in our analysis of the mode- 
coupling contributions to the pressure tensor and heat flux vector. In order 
to extend our results to larger gradients or distances, we would have to 
construct the hydrodynamic modes of the Boltzmann collision operator 
linearized about a spatially inhomogenous local equilibrium state. As this 
would involve mathematical problems of considerable complexity, e.g., 
solution of equations similar to the Orr-Sommerfeld equation, (1 ]) we have 
elected not to treat this case here. 

(3) In Section 5 we stressed that the mathematical mechanism for the 
long-range boundary effects in three dimensions was due to an incomplete 
cancellation of the propagating parts of two sound mode eigenvalues. This 
incomplete cancellation mechanism is also responsible for other mode- 
coupling effects that have been discussed previously in the literature. For 
example, this mechanism is responsible for the dominant boundary effects 
in nonequilibrium light scattering (3) and for the mode-coupling contribu- 
tions to the hydrodynamic dispersion relations. (7']4~ 

(4) In three dimensions, the long-range boundary effects have small 
numerical coefficients. For example, for a three-dimensional gas, say air at 
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20~ and one atmosphere, Eqs. (6.4) give 

8u(y)  ~(1.1 • 10 -9 cm~/2)yl/2X s (7.1a) 

S T ( y )  ~--(2.27 • 10 -6 cm~/2)y~/2X T (7.1b) 

where we have used that for air at STP, 

= 2 • 10 -4 g / cmsec ,  c = 3.3 • 104 cm/sec ,  

Fs = 0.29 cm2/sec, ?t = 5.83 • 102 g / ~  3 

For liquid densities, say argon at 110~ and a pressure of 60 atm, we 
obtain 

8u(s = (3.4 • 10 -8 cml /2)y t /2X s (7.2a) 

S T ( y )  = (1.42 • 10 -4 cml /2)y l /2X ~ (7.2b) 

where we have used ~ = 1.55 • 10 -3 g / cmsec ,  c = 7 .12•  104 cm/sec ,  
F s = 5.07 • 10 -3 cm2/see, and X = 1.03 • 104 g / ~  3. 

For two-dimensional fluids the effects are larger, and to estimate them 
we use Eqs. (6.5) and consider a two-dimensional gas of hard disks at the 
density na 2 = 0.3, where (5'is) l ~ a, 7/= (1.3)mnvo, v 0 = [2rrl/2(flm)l/2na] - t, 
F s = 3u0, )t = 2nkspo, c 2 = 6 .2 / f im,  Cp = ( l . 7 5 ) k ~ / m ,  and D r = ) , / m n C  e. 
From Eq. (6.5) we obtain 

8u(y)  ~ - ( O . 0 3 ) y X q o g ( y / l )  (7.3a) 

S T ( y )  ~- - (0 .2)yToX r log(y  / l ) (7.3b) 

The Eqs. (7.1), (7.2), and (7.3) imply that the long-range boundary 
effects are most important for the temperature field, and the heat flux, and 
that for two-dimensional fluids the long-range boundary effects are not 
small. 

(5) In two-dimensional systems the contributions 8P x. and 8Qy given 
Y (B) 

by Eqs. (5.7) actually dominate the Boltzmann values P~j and Q)B) 
given by Eqs. (3.8) for largey.  Thus the theory presented here breaks down 
at large enough y. To remedy this a more complete theory is needed such as 
in the kinetic theory in which more complicated collision sequences are 
taken into account, e.g., rings within rings. This approach as well as a 
self-consistent mode-coupling theory (16) suggest that for large y the log y 
terms in 8Pxy and 8Q), are to be replaced by (log y)l/2 terms. 

(6) Two interesting results of our three-dimensional calculations are 
that the normal stresses Pii are nonzero even when X ~ is zero if X T 4= 0 and 
there is a heat flux, Qx 4= 0, when X r = 0 if X s 4: O. Physically the normal 
stresses that occur when X ~ = 0 and x r 4 : 0  are due to the fact that sound 
waves originating in the hot region will transport heat and carry more 
energy than those from the cold region, and thus normal stresses will occur 
in the fluid. 
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The appearance of a heat flux in the absence of a temperature gradient 
is similar to the mechanocaloric effect found in kinetic boundary layers (2~ 
and superfluids. (17) 

(7) In Section 5 we showed that in three dimensions the leading 
corrections to the bulk stress tensor and heat flux are of 0(y~1/2). In 
analogy with the hydrodynamic dispersion relations in simple fluids (|4) we 
expect that there are an infinite sequence of contributions between y~1/2 
a n d y l  1 of the f o r m y l  (l-2-"/ (n = 2,3,4 . . . .  ). 

(8) As mentioned in Section 1 Wolynes (l) has also calculated 6Pxy for 
a three-dimensional fluid with X '  v a 0 and X r =  0. Our results for 3Pxy are 
qualitatively the same as his. However, a precise comparison of the numeri- 
cal coefficient is not possible due to some simplifications Wolynes used in 
his calculations. 
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